A dominated convergence theorem for Eisenstein series

نویسندگان

چکیده

Abstract Based on the new approach to modular forms presented in [6] that uses rational functions, we prove a dominated convergence theorem for certain Eisenstein space. It states rearrangements of Fourier series will converge very fast near cusp $$\tau = 0$$ τ = 0 . As an application, consider L -functions associated products and present natural generalized Dirichlet representations expanded half plane.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A metastable dominated convergence theorem

The dominated convergence theorem implies that if (fn) is a sequence of functions on a probability space taking values in the interval [0, 1], and (fn) converges pointwise a.e., then ( ∫ fn) converges to the integral of the pointwise limit. Tao [26] has proved a quantitative version of this theorem: given a uniform bound on the rates of metastable convergence in the hypothesis, there is a bound...

متن کامل

Godement’s criterion for convergence of Eisenstein series

The point is a relatively simple presentation of what turns out to be a sharp estimate for the region of convergence of the relatively simple Siegel-type Eisenstein series [1] on classical groups. The argument is essentially due to Godement, reproduced for real Lie groups by Borel in AMS Proc. Symp. Pure Math. IX (The Boulder Conference 1966). The necessary small excursion into reduction theory...

متن کامل

Lebesgue's dominated convergence theorem in Bishop's style

We present a constructive proof in Bishop’s style of Lebesgue’s dominated convergence theorem in the abstract setting of ordered uniform spaces. The proof generalises to this setting a classical proof in the framework of uniform lattices presented by Hans Weber in “Uniform Lattices II: Order Continuity and Exhaustivity”, in Annali di Matematica Pura ed Applicata (IV), Vol. CLXV (1993). 1. Both ...

متن کامل

Eisenstein Series*

group GC defined over Q whose connected component G 0 Q has no rational character. It is also necessary to suppose that the centralizer of a maximal Q split torus of G0C meets every component of GC. The reduction theory of Borel applies, with trivial modifications, to G; it will be convenient to assume that Γ has a fundamental set with only one cusp. Fix a minimal parabolic subgroup P 0 C defin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Mathématiques Du Québec

سال: 2021

ISSN: ['2195-4755', '2195-4763']

DOI: https://doi.org/10.1007/s40316-021-00157-7